3WOE image
Deposition Date 2013-12-26
Release Date 2014-03-12
Last Version Date 2024-11-06
Entry Detail
PDB ID:
3WOE
Title:
Crystal structure of P23-45 gp39 (6-109) bound to Thermus thermophilus RNA polymerase beta-flap domain
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.35 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 41 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta
Gene (Uniprot):rpoB
Chain IDs:A, C
Chain Length:130
Number of Molecules:2
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:Putative uncharacterized protein
Gene (Uniprot):P23p39
Chain IDs:B, D
Chain Length:106
Number of Molecules:2
Biological Source:Thermus phage P23-45
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE B MET SELENOMETHIONINE
Primary Citation
Structural basis for promoter specificity switching of RNA polymerase by a phage factor.
Genes Dev. 28 521 531 (2014)
PMID: 24589779 DOI: 10.1101/gad.233916.113

Abstact

Transcription of DNA to RNA by DNA-dependent RNA polymerase (RNAP) is the first step of gene expression and a major regulation point. Bacteriophages hijack their host's transcription machinery and direct it to serve their needs. The gp39 protein encoded by Thermus thermophilus phage P23-45 binds the host's RNAP and inhibits transcription initiation from its major "-10/-35" class promoters. Phage promoters belonging to the minor "extended -10" class are minimally inhibited. We report the crystal structure of the T. thermophilus RNAP holoenzyme complexed with gp39, which explains the mechanism for RNAP promoter specificity switching. gp39 simultaneously binds to the RNAP β-flap domain and the C-terminal domain of the σ subunit (region 4 of the σ subunit [σ4]), thus relocating the β-flap tip and σ4. The ~45 Å displacement of σ4 is incompatible with its binding to the -35 promoter consensus element, thus accounting for the inhibition of transcription from -10/-35 class promoters. In contrast, this conformational change is compatible with the recognition of extended -10 class promoters. These results provide the structural bases for the conformational modulation of the host's RNAP promoter specificity to switch gene expression toward supporting phage development for gp39 and, potentially, other phage proteins, such as T4 AsiA.

Legend

Protein

Chemical

Disease

Primary Citation of related structures