3VWJ image
Deposition Date 2012-08-24
Release Date 2012-10-03
Last Version Date 2024-10-16
Entry Detail
PDB ID:
3VWJ
Keywords:
Title:
Ternary crystal structure of the human NKT TCR-CD1d-C20:2 complex
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.09 Å
R-Value Free:
0.29
R-Value Work:
0.22
R-Value Observed:
0.23
Space Group:
C 2 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Antigen-presenting glycoprotein CD1d
Gene (Uniprot):CD1D
Chain IDs:A
Chain Length:284
Number of Molecules:1
Biological Source:Homo sapiens
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Beta-2-microglobulin
Gene (Uniprot):B2M
Chain IDs:B
Chain Length:99
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:NKT15 T cell receptor alpha-chain
Chain IDs:C
Chain Length:209
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:NKT15 T cell receptor beta-chain
Chain IDs:D
Chain Length:246
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex
J.Biol.Chem. 287 39139 39148 (2012)
PMID: 22995911 DOI: 10.1074/jbc.M112.412320

Abstact

Human and mouse type I natural killer T (NKT) cells respond to a variety of CD1d-restricted glycolipid antigens (Ags), with their NKT cell antigen receptors (NKT TCRs) exhibiting reciprocal cross-species reactivity that is underpinned by a conserved NKT TCR-CD1d-Ag docking mode. Within this common docking footprint, the NKT TCR recognizes, to varying degrees of affinity, a range of Ags. Presently, it is unclear whether the human NKT TCRs will mirror the generalities underpinning the fine specificity of the mouse NKT TCR-CD1d-Ag interaction. Here, we assessed human NKT TCR recognition against altered glycolipid ligands of α-galactosylceramide (α-GalCer) and have determined the structures of a human NKT TCR in complex with CD1d-4',4″-deoxy-α-GalCer and CD1d-α-GalCer with a shorter, di-unsaturated acyl chain (C20:2). Altered glycolipid ligands with acyl chain modifications did not affect the affinity of the human NKT TCR-CD1d-Ag interaction. Surprisingly, human NKT TCR recognition is more tolerant to modifications at the 4'-OH position in comparison with the 3'-OH position of α-GalCer, which contrasts the fine specificity of the mouse NKT TCR-CD1d-Ag recognition (4'-OH > 3'-OH). The fine specificity differences between human and mouse NKT TCRs was attributable to differing interactions between the respective complementarity-determining region 1α loops and the Ag. Accordingly, germline encoded fine-specificity differences underpin human and mouse type I NKT TCR interactions, which is an important consideration for therapeutic development and NKT cell physiology.

Legend

Protein

Chemical

Disease

Primary Citation of related structures