3VPH image
Deposition Date 2012-03-01
Release Date 2013-03-06
Last Version Date 2023-11-08
Entry Detail
PDB ID:
3VPH
Keywords:
Title:
L-lactate dehydrogenase from Thermus caldophilus GK24 complexed with oxamate, NADH and FBP
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:L-lactate dehydrogenase
Gene (Uniprot):ldh
Chain IDs:A, B, C, D
Chain Length:310
Number of Molecules:4
Biological Source:Thermus caldophilus
Primary Citation
The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase.
J.Biol.Chem. ? ? ? (2014)
PMID: 25258319 DOI: 10.1074/jbc.M114.599092

Abstact

For Thermus caldophilus L-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S(0.5) value 10(3)-fold and increased the V(max) value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus L-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172-185) and MR2 (positions 211-221), form a compact core for allosteric motion, and His(179) of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased V(max) 4-fold but reduced pyruvate S(0.5) only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase V(max), but 10(2)-reduced pyruvate S(0.5), and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback