3VL6 image
Entry Detail
PDB ID:
3VL6
Keywords:
Title:
3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 580 MPa
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2011-11-29
Release Date:
2012-02-29
Method Details:
Experimental Method:
Resolution:
2.07 Å
R-Value Free:
0.23
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:3-isopropylmalate dehydrogenase
Chain IDs:A
Chain Length:375
Number of Molecules:1
Biological Source:Shewanella oneidensis
Primary Citation
High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase
Acta Crystallogr.,Sect.D 68 300 309 (2012)
PMID: 22349232 DOI: 10.1107/S0907444912001862

Abstact

Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

Legend

Protein

Chemical

Disease

Primary Citation of related structures