3VEB image
Entry Detail
PDB ID:
3VEB
Title:
Crystal Structure of Matp-matS
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2012-01-07
Release Date:
2012-11-21
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.28
R-Value Work:
0.26
R-Value Observed:
0.26
Space Group:
P 65 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Macrodomain Ter protein
Chain IDs:A (auth: B), D (auth: A)
Chain Length:151
Number of Molecules:2
Biological Source:Yersinia pestis
Ligand Molecules
Primary Citation
Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome.
Mol.Cell 48 560 571 (2012)
PMID: 23084832 DOI: 10.1016/j.molcel.2012.09.009

Abstact

The E. coli chromosome is condensed into insulated regions termed macrodomains (MDs), which are essential for genomic packaging. How chromosomal MDs are specifically organized and compacted is unknown. Here, we report studies revealing the molecular basis for Terminus-containing (Ter) chromosome condensation by the Ter-specific factor MatP. MatP contains a tripartite fold with a four-helix bundle DNA-binding motif, ribbon-helix-helix and C-terminal coiled-coil. Strikingly, MatP-matS structures show that the MatP coiled-coils form bridged tetramers that flexibly link distant matS sites. Atomic force microscopy and electron microscopy studies demonstrate that MatP alone loops DNA. Mutation of key coiled-coil residues destroys looping and causes a loss of Ter condensation in vivo. Thus, these data reveal the molecular basis for a protein-mediated DNA-bridging mechanism that mediates condensation of a large chromosomal domain in enterobacteria.

Legend

Protein

Chemical

Disease

Primary Citation of related structures