3V7M image
Deposition Date 2011-12-21
Release Date 2012-02-22
Last Version Date 2024-11-20
Entry Detail
PDB ID:
3V7M
Keywords:
Title:
Crystal structure of monoclonal human anti-Rhesus D Fc IgG1 T125(YB2/0) in the presence of Zn2+
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.02 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Ig gamma-1 chain C region
Gene (Uniprot):IGHG1
Chain IDs:A
Chain Length:209
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Effect of zinc on human IgG1 and its Fc gamma R interactions.
Immunol.Lett. 143 60 69 (2012)
PMID: 22553781

Abstact

In the present study, we show that histidines 310 and 435 at the CH2-CH3 interface of the Fc portion of human IgG1 can coordinate a Zn2+ and participate in the control of the CH2-CH2 interdomain opening. Structures obtained in the absence of Zn2+ have a reduced interdomain gap that likely hamper FcγR binding. This closed conformation of the Fc is stabilized by inter-CH2 domain sugar contacts. Zinc appears to counteract the sugar mediated constriction, suggesting that zinc could be an important control factor in IgG1/FcγR interactions. The results of binding studies performed in the presence of EDTA on FcγR expressing cells supports this hypothesis. When a mutated Fc fragment, in which histidines 310 and 435 have been substituted by lysines (Fc H/K), was compared with the wild-type Fc in crystallographic studies, we found that the mutations leave the interface unaltered but have a long-range effect on the CH2 interdomain separation. Moreover, these substitutions have a differential effect on the binding of IgG1 to Fcγ receptors and their functions. Interaction with the inhibitory FcγRIIB is strongly perturbed by the mutations and mutant IgG1 H/K only weakly engages this receptor. By contrast, higher affinity FcγR are mostly unaffected.

Legend

Protein

Chemical

Disease

Primary Citation of related structures