3UVX image
Deposition Date 2011-11-30
Release Date 2012-01-25
Last Version Date 2024-10-09
Entry Detail
PDB ID:
3UVX
Title:
Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K12acK16ac)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.91 Å
R-Value Free:
0.21
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Bromodomain-containing protein 4
Gene (Uniprot):BRD4
Chain IDs:A
Chain Length:127
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:diacetylated histone 4 peptide
Chain IDs:B
Chain Length:11
Number of Molecules:1
Biological Source:homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ALY B LYS N(6)-ACETYLLYSINE
Primary Citation
Histone recognition and large-scale structural analysis of the human bromodomain family.
Cell(Cambridge,Mass.) 149 214 231 (2012)
PMID: 22464331 DOI: 10.1016/j.cell.2012.02.013

Abstact

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.

Legend

Protein

Chemical

Disease

Primary Citation of related structures