3UTB image
Entry Detail
PDB ID:
3UTB
Title:
Crystal Structure of Nucleosome Core Particle Assembled with the 146b Alpha-Satellite Sequence (NCP146b)
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2011-11-25
Release Date:
2012-04-11
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Histone H3.2
Chain IDs:A, E
Chain Length:135
Number of Molecules:2
Biological Source:Xenopus laevis
Polymer Type:polypeptide(L)
Description:Histone H4
Chain IDs:B, F
Chain Length:102
Number of Molecules:2
Biological Source:Xenopus laevis
Polymer Type:polypeptide(L)
Description:Histone H2A
Chain IDs:C, G
Chain Length:129
Number of Molecules:2
Biological Source:Xenopus laevis
Polymer Type:polypeptide(L)
Description:Histone H2B 1.1
Chain IDs:D, H
Chain Length:125
Number of Molecules:2
Biological Source:Xenopus laevis
Polymer Type:polydeoxyribonucleotide
Description:146-mer DNA
Chain IDs:I, J
Chain Length:146
Number of Molecules:2
Biological Source:
Primary Citation
The mechanics behind DNA sequence-dependent properties of the nucleosome
Nucleic Acids Res. 40 6338 6352 (2012)
PMID: 22453276 DOI: 10.1093/nar/gks261

Abstact

Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3-H4 relative to H2A-H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.

Legend

Protein

Chemical

Disease

Primary Citation of related structures