3U18 image
Deposition Date 2011-09-29
Release Date 2012-07-18
Last Version Date 2023-09-13
Entry Detail
PDB ID:
3U18
Keywords:
Title:
Chicago Sky Blue 6B, A Novel Inhibitor for Macrophage Migration Inhibitory Factor
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.17
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Macrophage migration inhibitory factor
Gene (Uniprot):MIF
Chain IDs:A, B, C
Chain Length:114
Number of Molecules:3
Biological Source:Homo sapiens
Primary Citation
A Novel Allosteric Inhibitor of Macrophage Migration Inhibitory Factor (MIF).
J.Biol.Chem. 287 30653 30663 (2012)
PMID: 22782901 DOI: 10.1074/jbc.M112.385583

Abstact

Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback