3T57 image
Deposition Date 2011-07-26
Release Date 2012-05-23
Last Version Date 2023-09-13
Entry Detail
PDB ID:
3T57
Keywords:
Title:
Activity and Crystal Structure of Arabidopsis UDP-N-acetylglucosamine acyltransferase
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 63 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:UDP-N-acetylglucosamine O-acyltransferase domain-containing protein
Gene (Uniprot):LPXA
Chain IDs:A
Chain Length:305
Number of Molecules:1
Biological Source:Arabidopsis thaliana
Primary Citation
Activity and Crystal Structure of Arabidopsis thalianaUDP-N-Acetylglucosamine Acyltransferase.
Biochemistry 51 4322 4330 (2012)
PMID: 22545860 DOI: 10.1021/bi3002242

Abstact

The UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase, encoded by lpxA, catalyzes the first step of lipid A biosynthesis in Gram-negative bacteria, the (R)-3-hydroxyacyl-ACP-dependent acylation of the 3-OH group of UDP-GlcNAc. Recently, we demonstrated that the Arabidopsis thaliana orthologs of six enzymes of the bacterial lipid A pathway produce lipid A precursors with structures similar to those of Escherichia coli lipid A precursors [Li, C., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 11387-11392]. To build upon this finding, we have cloned, purified, and determined the crystal structure of the A. thaliana LpxA ortholog (AtLpxA) to 2.1 Å resolution. The overall structure of AtLpxA is very similar to that of E. coli LpxA (EcLpxA) with an α-helical-rich C-terminus and characteristic N-terminal left-handed parallel β-helix (LβH). All key catalytic and chain length-determining residues of EcLpxA are conserved in AtLpxA; however, AtLpxA has an additional coil and loop added to the LβH not seen in EcLpxA. Consistent with the similarities between the two structures, purified AtLpxA catalyzes the same reaction as EcLpxA. In addition, A. thaliana lpxA complements an E. coli mutant lacking the chromosomal lpxA and promotes the synthesis of lipid A in vivo similar to the lipid A produced in the presence of E. coli lpxA. This work shows that AtLpxA is a functional UDP-GlcNAc acyltransferase that is able to catalyze the same reaction as EcLpxA and supports the hypothesis that lipid A molecules are biosynthesized in Arabidopsis and other plants.

Legend

Protein

Chemical

Disease

Primary Citation of related structures