3SYM image
Deposition Date 2011-07-18
Release Date 2012-02-15
Last Version Date 2025-03-26
Entry Detail
PDB ID:
3SYM
Title:
Glycogen Phosphorylase b in complex with 3 -C-(hydroxymethyl)-beta-D-glucopyranonucleoside of 5-fluorouracil
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.20
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Glycogen phosphorylase, muscle form
Gene (Uniprot):PYGM
Chain IDs:A
Chain Length:842
Number of Molecules:1
Biological Source:Oryctolagus cuniculus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
LLP A LYS ?
Ligand Molecules
Primary Citation
3'-Axial CH(2) OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM-PBSA Calculations Suggest Why.
Chem.Biol.Drug Des. 79 663 673 (2012)
PMID: 22296957 DOI: 10.1111/j.1747-0285.2012.01349.x

Abstact

Glycogen phosphorylase is a molecular target for the design of potential hypoglycemic agents. Structure-based design pinpointed that the 3'-position of glucopyranose equipped with a suitable group has the potential to form interactions with enzyme's cofactor, pyridoxal 5'-phosphate (PLP), thus enhancing the inhibitory potency. Hence, we have investigated the binding of two ligands, 1-(β-d-glucopyranosyl)5-fluorouracil (GlcFU) and its 3'-CH(2) OH glucopyranose derivative. Both ligands were found to be low micromolar inhibitors with K(i) values of 7.9 and 27.1 μm, respectively. X-ray crystallography revealed that the 3'-CH(2) OH glucopyranose substituent is indeed involved in additional molecular interactions with the PLP γ-phosphate compared with GlcFU. However, it is 3.4 times less potent. To elucidate this discovery, docking followed by postdocking Quantum Mechanics/Molecular Mechanics - Poisson-Boltzmann Surface Area (QM/MM-PBSA) binding affinity calculations were performed. While the docking predictions failed to reflect the kinetic results, the QM/MM-PBSA revealed that the desolvation energy cost for binding of the 3'-CH(2) OH-substituted glucopyranose derivative out-weigh the enthalpy gains from the extra contacts formed. The benefits of performing postdocking calculations employing a more accurate solvation model and the QM/MM-PBSA methodology in lead optimization are therefore highlighted, specifically when the role of a highly polar/charged binding interface is significant.

Legend

Protein

Chemical

Disease

Primary Citation of related structures