3SUZ image
Deposition Date 2011-07-11
Release Date 2012-07-11
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3SUZ
Keywords:
Title:
Crystal structure of Rat Mint2 PPC
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.28
R-Value Work:
0.26
R-Value Observed:
0.26
Space Group:
P 32 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Amyloid beta A4 precursor protein-binding family A member 2
Gene (Uniprot):Apba2
Chain IDs:A
Chain Length:388
Number of Molecules:1
Biological Source:Rattus norvegicus
Primary Citation
Open-closed motion of Mint2 regulates APP metabolism
J Mol Cell Biol 5 48 56 (2013)
PMID: 22730553 DOI: 10.1093/jmcb/mjs033

Abstact

The amyloid-β protein precursor (APP) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Knock-out and transgenic mouse studies of the adaptor protein Mint2 have revealed that it is a major player in regulating APP metabolism physiologically through the binding of its phosphotyrosine-binding (PTB) domain to the intracellular domain of APP. However, the molecular mechanism of APP dynamically binding to Mint2 remains elusive. Here, we report the structures of APP peptide-free and APP peptide-bound C-terminal Mint2 mutants at resolutions of 2.7 and 3.3 Å, respectively. Our structures reveal that APP peptide-free Mint2 exists in a closed state in which the ARM domain blocks the peptide-binding groove of the PTB domain. In sharp contrast, APP peptide-bound Mint2 exists in an open state in which the ARM domain drastically swings away from the bound peptide. Mutants that control the open-closed motion of Mint2 dynamically regulated APP metabolism both in vitro and in vivo. Our results uncover a novel open-closed mechanism of the PTB domain dynamically binding to its peptide substrate. Moreover, such a conformational switch may represent a general regulation mode of APP family members by Mint proteins, providing useful information for the treatment of AD.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback