3SSG image
Deposition Date 2011-07-08
Release Date 2011-11-30
Last Version Date 2024-02-28
Entry Detail
PDB ID:
3SSG
Keywords:
Title:
Structure of transthyretin L55P in complex with Zn
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 42 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Transthyretin
Gene (Uniprot):TTR
Mutagens:L55P
Chain IDs:A
Chain Length:127
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Structural insights into a zinc-dependent pathway leading to Leu55Pro transthyretin amyloid fibrils.
Acta Crystallogr.,Sect.D 67 1035 1044 (2011)
PMID: 22120741 DOI: 10.1107/S090744491104491X

Abstact

Human transthyretin (TTR) is a homotetrameric protein that is responsible for the formation of amyloid in patients with familiar amyloidotic polyneuropathy (FAP), familiar amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Amyloid fibrils are characterized by a cross-β structure. However, details of how TTR monomers are organized to form such an assembly remain unknown. The effect of Zn(2+) in increasing TTR L55P amyloidogenecity has been reported. Crystals of the TTR L55P-Zn(2+) complex were grown under conditions similar to those leading to higher amyloidogenic potential of the variant protein and the three-dimensional structure of the complex was determined by X-ray crystallography. Two different tetrahedral Zn(2+)-binding sites were identified: one cross-links two tetramers, while the other lies at the interface between two monomers in a dimer. The association of monomers involving the two Zn(2+)-binding sites leads to a bidimensional array with a cross-β structure. The formation of this structure and subsequent organization into amyloid fibrils was monitored by fluorescence spectroscopy and electron microscopy. The TTR L55P-Zn(2+) structure offers the first molecular insights into the role of Zn(2+) as a mediator of cross-β-type structure in TTR amyloidosis and the relevance of a Zn(2+)-dependent pathway leading to the production of early amyloidogenic intermediates is discussed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures