3RG5 image
Deposition Date 2011-04-07
Release Date 2011-06-08
Last Version Date 2024-04-03
Entry Detail
PDB ID:
3RG5
Keywords:
Title:
Crystal Structure of Mouse tRNA(Sec)
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polyribonucleotide
Molecule:tRNA(Sec)
Chain IDs:A, B
Chain Length:86
Number of Molecules:2
Biological Source:Mus musculus
Primary Citation
Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse.
Plos One 6 e20032 e20032 (2011)
PMID: 21629646 DOI: 10.1371/journal.pone.0020032

Abstact

BACKGROUND Selenocysteine tRNAs (tRNA(Sec)) exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec)-interacting factors are incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec). tRNA(Sec) lacking the single-stranded 3'-acceptor end ((ΔGCCA)RNA(Sec)) yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCA)RNA(Sec) resembles the structure of human tRNA(Sec) determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec) used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Sec)in vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+)-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec). CONCLUSIONS/SIGNIFICANCE We provide the most highly resolved structure of a tRNA(Sec) molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec) support its interaction with proteins.

Legend

Protein

Chemical

Disease

Primary Citation of related structures