3R2K image
Deposition Date 2011-03-14
Release Date 2011-05-25
Last Version Date 2023-09-13
Entry Detail
PDB ID:
3R2K
Title:
1.55A resolution structure of As-Isolated FtnA from Pseudomonas aeruginosa (pH 7.5)
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.55 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
F 4 3 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Bacterioferritin
Gene (Uniprot):ftnA
Chain IDs:A
Chain Length:154
Number of Molecules:1
Biological Source:Pseudomonas aeruginosa
Ligand Molecules
Primary Citation
Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr).
Biochemistry 50 5236 5248 (2011)
PMID: 21574546 DOI: 10.1021/bi2004119

Abstact

Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). The early isolation of a ferritin-like molecule from Pseudomonas aeruginosa suggested the possibility of a bacterioferritin assembled from two different subunits [Moore, G. R., et al. (1994) Biochem. J. 304, 493-497]. Subsequent studies demonstrated the presence of two genes encoding ferritin-like molecules in P. aeruginosa, designated bfrA and bfrB, and suggested that two distinct bacterioferritins may coexist [Ma, J.-F., et al. (1999) J. Bacteriol. 181, 3730-3742]. In this report, we present structural evidence demonstrating that the product of the bfrA gene is a ferritin-like molecule not capable of binding heme that harbors a catalytically active ferroxidase center with structural properties similar to those characteristic of bacterial and archaeal Ftns and clearly distinct from those of the ferroxidase center typical of Bfrs. Consequently, the product of the bfrA gene in P. aeruginosa is a bacterial ferritin, which we propose should be termed Pa FtnA. These results, together with the previous characterization of the product of the bfrB gene as a genuine bacterioferritin (Pa BfrB) [Weeratunga, S. J., et al. (2010) Biochemistry 49, 1160-1175], indicate the coexistence of a bacterial ferritin (Pa FtnA) and a bacterioferritin (Pa BfrB) in P. aeruginosa. In agreement with this idea, we also obtained evidence demonstrating that release of iron from Pa BfrB and Pa FtnA is likely subject to different regulation in P. aerugionsa. Whereas the efficient release of iron stored in Pa FtnA requires only the input of electrons from a ferredoxin NADP reductase (Pa Fpr), the release of iron stored in Pa BfrB requires not only electron delivery by Pa Fpr but also the presence of a "regulator", the apo form of a bacterioferritin-associated ferredoxin (apo Pa Bfd). Finally, structural analysis of iron uptake in crystallo suggests a possible pathway for the internalization of ferroxidase iron into the interior cavity of Pa FtnA.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback