3QF7 image
Entry Detail
PDB ID:
3QF7
Keywords:
Title:
The Mre11:Rad50 complex forms an ATP dependent molecular clamp in DNA double-strand break repair
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2011-01-21
Release Date:
2011-04-20
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.19
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Rad50
Chain IDs:A, B
Chain Length:365
Number of Molecules:2
Biological Source:Thermotoga maritima
Polymer Type:polypeptide(L)
Description:Mre11
Chain IDs:C (auth: D), D (auth: C)
Chain Length:50
Number of Molecules:2
Biological Source:Thermotoga maritima
Primary Citation
The Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-Strand Break Repair.
Cell(Cambridge,Mass.) 145 54 66 (2011)
PMID: 21458667 DOI: 10.1016/j.cell.2011.02.038

Abstact

The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfolded. To reveal its mechanism, we determined the crystal structure of the catalytic head of Thermotoga maritima MR and analyzed ATP-dependent conformational changes. MR adopts an open form with a central Mre11 nuclease dimer and two peripheral Rad50 molecules, a form suited for sensing obstructed breaks. The Mre11 C-terminal helix-loop-helix domain binds Rad50 and attaches flexibly to the nuclease domain, enabling large conformational changes. ATP binding to the two Rad50 subunits induces a rotation of the Mre11 helix-loop-helix and Rad50 coiled-coil domains, creating a clamp conformation with increased DNA-binding activity. The results suggest that MR is an ATP-controlled transient molecular clamp at DNA double-strand breaks.

Legend

Protein

Chemical

Disease

Primary Citation of related structures