3PZE image
Deposition Date 2010-12-14
Release Date 2011-12-14
Last Version Date 2024-02-21
Entry Detail
PDB ID:
3PZE
Title:
JNK1 in complex with inhibitor
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Mitogen-activated protein kinase 8
Gene (Uniprot):MAPK8
Chain IDs:A
Chain Length:358
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Discovery of Checkpoint Kinase Inhibitor (S)-5-(3-Fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) by Structure-Based Design and Optimization of Thiophenecarboxamide Ureas.
J.Med.Chem. 55 5130 5142 (2012)
PMID: 22551018 DOI: 10.1021/jm300025r

Abstact

Checkpoint kinases CHK1 and CHK2 are activated in response to DNA damage that results in cell cycle arrest, allowing sufficient time for DNA repair. Agents that lead to abrogation of such checkpoints have potential to increase the efficacy of such compounds as chemo- and radiotherapies. Thiophenecarboxamide ureas (TCUs) were identified as inhibitors of CHK1 by high throughput screening. A structure-based approach is described using crystal structures of JNK1 and CHK1 in complex with 1 and 2 and of the CHK1-3b complex. The ribose binding pocket of CHK1 was targeted to generate inhibitors with excellent cellular potency and selectivity over CDK1and IKKβ, key features lacking from the initial compounds. Optimization of 3b resulted in the identification of a regioisomeric 3-TCU lead 12a. Optimization of 12a led to the discovery of the clinical candidate 4 (AZD7762), which strongly potentiates the efficacy of a variety of DNA-damaging agents in preclinical models.

Legend

Protein

Chemical

Disease

Primary Citation of related structures