3OPM image
Deposition Date 2010-09-01
Release Date 2011-10-19
Last Version Date 2024-10-16
Entry Detail
PDB ID:
3OPM
Title:
Crystal Structure of Human DPP4 Bound to TAK-294
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.72 Å
R-Value Free:
0.25
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Dipeptidyl peptidase 4
Gene (Uniprot):DPP4
Mutations:N-terminal His tag
Chain IDs:A, B, C, D
Chain Length:740
Number of Molecules:4
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: a new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554.
Bioorg.Med.Chem. 19 4953 4970 (2011)
PMID: 21764322 DOI: 10.1016/j.bmc.2011.06.059

Abstact

The design, synthesis, and structure-activity relationships of a new class of potent and orally active non-peptide dipeptidyl peptidase IV (DPP-4) inhibitors, 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones, are described. We hypothesized that the 4-phenyl group of the isoquinolone occupies the S1 pocket of the enzyme, the 3-aminomethyl group forms an electrostatic interaction with the S2 pocket, and the introduction of a hydrogen bond donor onto the 6- or 7-substituent provides interaction with the hydrophilic region of the enzyme. Based on this hypothesis, intensive research focused on developing new non-peptide DPP-4 inhibitors has been carried out. Among the compounds designed in this study, we identified 2-[(3-aminomethyl-2-(2-methylpropyl)-1-oxo-4-phenyl-1,2-dihydro-6-isoquinolinyl)oxy]acetamide (35a) as a potent, selective, and orally bioavailable DPP-4 inhibitor, which exhibited in vivo efficacy in diabetic model rats. Finally, X-ray crystallography of 35a in a complex with the enzyme validated our hypothesized binding mode and identified Lys554 as a new target-binding site available for DPP-4 inhibitors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures