3NV6 image
Deposition Date 2010-07-08
Release Date 2010-11-03
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3NV6
Keywords:
Title:
Crystal Structure of Camphor-Bound CYP101D2
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.25
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 32 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Cytochrome P450
Gene (Uniprot):Saro_1478
Chain IDs:A
Chain Length:452
Number of Molecules:1
Biological Source:Novosphingobium aromaticivorans
Primary Citation
The structure of CYP101D2 unveils a potential path for substrate entry into the active site
Biochem.J. 433 85 93 (2011)
PMID: 20950270 DOI: 10.1042/BJ20101017

Abstact

The cytochrome P450 CYP101D2 from Novosphingobium aromaticivorans DSM12444 is closely related to CYP101D1 from the same bacterium and to P450cam (CYP101A1) from Pseudomonas putida. All three are capable of oxidizing camphor stereoselectively to 5-exo-hydroxycamphor. The crystal structure of CYP101D2 revealed that the likely ferredoxin-binding site on the proximal face is largely positively charged, similar to that of CYP101D1. However, both the native and camphor-soaked forms of CYP101D2 had open conformations with an access channel. In the active site of the camphor-soaked form, the camphor carbonyl interacted with the haem-iron-bound water. Two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure: one located in the access channel, flanked by the B/C and F/G loops and the I helix, and the other in a cavity on the surface of the enzyme near the F helix side of the F/G loop. The observed open structures may be conformers of the CYP101D2 enzyme that enable the substrate to enter the buried active site via a conformational selection mechanism. The second and third binding sites may be intermediate locations of substrate entry and translocation into the active site, and provide insight into a multi-step substrate-binding mechanism.

Legend

Protein

Chemical

Disease

Primary Citation of related structures