3NB7 image
Deposition Date 2010-06-02
Release Date 2011-05-18
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3NB7
Keywords:
Title:
Crystal structure of Aquifex Aeolicus Peptidoglycan Glycosyltransferase in complex with Decarboxylated Neryl Moenomycin
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.65 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Penicillin-binding protein 1A
Gene (Uniprot):mrcA
Chain IDs:A
Chain Length:200
Number of Molecules:1
Biological Source:Aquifex aeolicus
Ligand Molecules
Primary Citation
Functional and structural analysis of a key region of the cell wall inhibitor moenomycin.
Acs Chem.Biol. 5 701 711 (2010)
PMID: 20496948 DOI: 10.1021/cb100048q

Abstact

Moenomycin A (MmA) belongs to a family of natural products that inhibit peptidoglycan biosynthesis by binding to the peptidoglycan glycosyltransferases, the enzymes that make the glycan chains of peptidoglycan. MmA is remarkably potent, but its clinical utility has been hampered by poor physicochemical properties. Moenomycin contains three structurally distinct regions: a pentasaccharide, a phosphoglycerate, and a C25 isoprenyl (moenocinyl) lipid tail that gives the molecule its name. The phosphoglycerate moiety links the pentasaccharide to the moenocinyl chain. This moiety contains two negatively charged groups, a phosphoryl group and a carboxylate. Both the phosphoryl group and the carboxylate have previously been implicated in target binding but the role of the carboxylate has not been explored in detail. Here we report the synthesis of six MmA analogues designed to probe the importance of the phosphoglycerate. These analogues were evaluated for antibacterial and enzyme inhibitory activity; the specific contacts between the phosphoglycerate and the protein target were assessed by X-ray crystallography in conjunction with molecular modeling. Both the phosphoryl group and the carboxylate of the phosphoglycerate chain play roles in target binding. The negative charge of the carboxylate, and not its specific structure, appears to be the critical feature in binding since replacing it with a negatively charged acylsulfonamide group produces a more active compound than replacing it with the isosteric amide. Analysis of the ligand-protein contacts suggests that the carboxylate makes a critical contact with an invariant lysine in the active site. The reported work provides information and validated computational methods critical for the design of analogues based on moenomycin scaffolds.

Legend

Protein

Chemical

Disease

Primary Citation of related structures