3MQL image
Deposition Date 2010-04-28
Release Date 2010-08-25
Last Version Date 2024-10-30
Entry Detail
PDB ID:
3MQL
Keywords:
Title:
Crystal structure of the fibronectin 6FnI1-2FnII7FnI fragment
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.00 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
I 41 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Fibronectin 1
Mutagens:H307D
Chain IDs:A
Chain Length:220
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI
J.Biol.Chem. 285 33764 33770 (2010)
PMID: 20739283 DOI: 10.1074/jbc.M110.139394

Abstact

Collagen and fibronectin (FN) are two abundant and essential components of the vertebrate extracellular matrix; they interact directly with cellular receptors and affect cell adhesion and migration. Past studies identified a FN fragment comprising six modules, (6)FnI(1-2)FnII(7-9)FnI, and termed the gelatin binding domain (GBD) as responsible for collagen interaction. Recently, we showed that the GBD binds tightly to a specific site within type I collagen and determined the structure of domains (8-9)FnI in complex with a peptide from that site. Here, we present the crystallographic structure of domains (6)FnI(1-2)FnII(7)FnI, which form a compact, globular unit through interdomain interactions. Analysis of NMR titrations with single-stranded collagen peptides reveals a dominant collagen interaction surface on domains (2)FnII and (7)FnI; a similar surface appears involved in interactions with triple-helical peptides. Models of the complete GBD, based on the new structure and the (8-9)FnI·collagen complex show a continuous putative collagen binding surface. We explore the implications of this model using long collagen peptides and discuss our findings in the context of FN interactions with collagen fibrils.

Legend

Protein

Chemical

Disease

Primary Citation of related structures