3MDL image
Deposition Date 2010-03-30
Release Date 2011-04-13
Last Version Date 2024-10-30
Entry Detail
PDB ID:
3MDL
Keywords:
Title:
X-ray crystal structure of 1-arachidonoyl glycerol bound to the cyclooxygenase channel of cyclooxygenase-2
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.21
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
I 2 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Prostaglandin G/H synthase 2
Gene (Uniprot):Ptgs2
Mutagens:N580A
Chain IDs:A, B
Chain Length:587
Number of Molecules:2
Biological Source:Mus musculus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN B ASN GLYCOSYLATION SITE
Primary Citation
The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.
J.Biol.Chem. 286 20736 20745 (2011)
PMID: 21489986 DOI: 10.1074/jbc.M111.230367

Abstact

The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures