3L6P image
Deposition Date 2009-12-23
Release Date 2010-03-02
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3L6P
Title:
Crystal Structure of Dengue Virus 1 NS2B/NS3 protease
Biological Source:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.24
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:fusion protein of nonstructural protein 2B and nonstructural protein 3
Mutations:deletion NS3 PROTEASE, residues 1486-1495
Chain IDs:A
Chain Length:236
Number of Molecules:1
Biological Source:Dengue virus type 1 (strain Singapore/S275/1990), Dengue virus type 1 (strain Nauru/West Pac/1974)
Primary Citation
Serotype-specific structural differences in the protease-cofactor complexes of the dengue virus family.
J.Virol. 84 3059 3067 (2010)
PMID: 20042502 DOI: 10.1128/JVI.02044-09

Abstact

With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-A crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures