3KZD image
Deposition Date 2009-12-08
Release Date 2010-04-21
Last Version Date 2024-02-21
Entry Detail
PDB ID:
3KZD
Title:
Crystal Structure of Free T-cell Lymphoma Invasion and Metastasis-1 PDZ Domain
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.30 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:T-lymphoma invasion and metastasis-inducing protein 1
Gene (Uniprot):TIAM1
Mutations:Q844H
Chain IDs:A
Chain Length:94
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion.
J.Mol.Biol. 398 730 746 (2010)
PMID: 20361982 DOI: 10.1016/j.jmb.2010.03.047

Abstact

The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a "model" peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures