3KWC image
Deposition Date 2009-12-01
Release Date 2010-02-23
Last Version Date 2024-11-27
Entry Detail
PDB ID:
3KWC
Title:
Oxidized, active structure of the beta-carboxysomal gamma-Carbonic Anhydrase, CcmM
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Carbon dioxide concentrating mechanism protein
Gene (Uniprot):ccmM
Chain IDs:A, B, C, D, E, F
Chain Length:229
Number of Molecules:6
Biological Source:Thermosynechococcus elongatus
Primary Citation
Structural basis of the oxidative activation of the carboxysomal {gamma}-carbonic anhydrase, CcmM.
Proc.Natl.Acad.Sci.USA 107 2455 2460 (2010)
PMID: 20133749 DOI: 10.1073/pnas.0910866107

Abstact

Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO(2) by carbonic anhydrase (CA) prior to fixation. Paradoxically, many beta-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal beta-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to gamma-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA-the first catalytically active bacterial gamma-CA reported. The 2.0 A structure of CcmM209 reveals a trimeric, left-handed beta-helix structure that closely resembles Cam, except that residues 198-207 form a third alpha-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 A structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the beta-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.

Legend

Protein

Chemical

Disease

Primary Citation of related structures