3K4F image
Deposition Date 2009-10-05
Release Date 2009-12-15
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3K4F
Keywords:
Title:
X-Ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 4-Phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.17 Å
R-Value Free:
0.27
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Heme oxygenase 1
Gene (Uniprot):HMOX1
Chain IDs:A, B
Chain Length:233
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Heme Oxygenase Inhibition by 2-Oxy-substituted 1-Azolyl-4-phenylbutanes: Effect of Variation of the Azole Moiety. X-Ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 4-Phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone.
Chem.Biol.Drug Des. 75 68 90 (2010)
PMID: 19954435 DOI: 10.1111/j.1747-0285.2009.00909.x

Abstact

A series of 1-azolyl-4-phenyl-2-butanones was designed and synthesized for the inhibition of heme oxygenases (heme oxygenase-1 and heme oxygenase-2). The replacement of imidazole by other azoles led to the discovery of novel 1H-1,2,4-triazole- and 1H-tetrazole-based inhibitors equipotent to a lead imidazole-based inhibitor. The inhibitors featuring 2H-tetrazole or 1H-1,2,3-triazole as the pharmacophore were less potent. Monosubstitution at position 2 or 4(5), or identical disubstitution at positions 4 and 5 of imidazole by a variety of electron-withdrawing or electron-donating, small or bulky groups, as well as the replacement of the traditional imidazole pharmacophore by an array of 3- or 5-substituted triazoles, identically 3,5-disubstituted triazoles, 5-substituted-1H- and 5-substituted-2H-tetrazoles proved to be detrimental to the inhibition of HO, with a few exceptions. The azole-dioxolanes and the azole-alcohols derived from the active azole-ketones were synthesized also, but these inhibitors were less active than the corresponding imidazole-based analogs. The first reported X-ray crystal structure of human heme oxygenase-1 in complex with a 1,2,4-triazole-based inhibitor, namely 4-phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, was also determined. The inhibitor binds to the human heme oxygenase-1 distal pocket through the coordination of heme iron by the N4 in the triazole moiety, whereas the phenyl group is stabilized by hydrophobic interactions from residues within the binding pocket.

Legend

Protein

Chemical

Disease

Primary Citation of related structures