3K1F image
Deposition Date 2009-09-27
Release Date 2009-11-10
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3K1F
Keywords:
Title:
Crystal structure of RNA Polymerase II in complex with TFIIB
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
4.30 Å
R-Value Free:
0.25
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
C 2 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB1
Gene (Uniprot):RPO21
Chain IDs:A
Chain Length:1733
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB2
Gene (Uniprot):RPB2
Chain IDs:B
Chain Length:1224
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB3
Gene (Uniprot):RPB3
Chain IDs:C
Chain Length:318
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB4
Gene (Uniprot):RPB4
Chain IDs:D
Chain Length:221
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC1
Gene (Uniprot):RPB5
Chain IDs:E
Chain Length:215
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC2
Gene (Uniprot):RPO26
Chain IDs:F
Chain Length:155
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB7
Gene (Uniprot):RPB7
Chain IDs:G
Chain Length:171
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC3
Gene (Uniprot):RPB8
Chain IDs:H
Chain Length:146
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB9
Gene (Uniprot):RPB9
Chain IDs:I
Chain Length:122
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC5
Gene (Uniprot):RPB10
Chain IDs:J
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB11
Gene (Uniprot):RPB11
Chain IDs:K
Chain Length:120
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC4
Gene (Uniprot):RPC10
Chain IDs:L
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Transcription initiation factor IIB
Chain IDs:M
Chain Length:197
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Ligand Molecules
Primary Citation
RNA polymerase II-TFIIB structure and mechanism of transcription initiation.
Nature 462 323 330 (2009)
PMID: 19820686 DOI: 10.1038/nature08548

Abstact

To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback