3JZ1 image
Deposition Date 2009-09-22
Release Date 2009-10-20
Last Version Date 2024-11-27
Entry Detail
PDB ID:
3JZ1
Keywords:
Title:
Crystal structure of human thrombin mutant N143P in E:Na+ form
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.21
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Thrombin light chain
Gene (Uniprot):F2
Mutations:N143P
Chain IDs:A
Chain Length:36
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:Thrombin heavy chain
Gene (Uniprot):F2
Chain IDs:B
Chain Length:259
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN B ASN GLYCOSYLATION SITE
Primary Citation
Mutant N143P reveals how Na+ activates thrombin
J.Biol.Chem. 284 36175 36185 (2009)
PMID: 19846563 DOI: 10.1074/jbc.M109.069500

Abstact

The molecular mechanism of thrombin activation by Na(+) remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na(+) forms. The extended scheme establishes that analysis of k(cat) unequivocally identifies allosteric transduction of Na(+) binding into enhanced catalytic activity. The thrombin mutant N143P features no Na(+)-dependent enhancement of k(cat) yet binds Na(+) with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na(+) confirm that Pro(143) abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu(192), which in turn controls the orientation of the Glu(192)-Gly(193) peptide bond and the correct architecture of the oxyanion hole. We conclude that Na(+) activates thrombin by securing the correct orientation of the Glu(192)-Gly(193) peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na(+) activation is present in all Na(+)-activated trypsin-like proteases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures