3JRT image
Deposition Date 2009-09-08
Release Date 2009-09-22
Last Version Date 2024-11-20
Entry Detail
PDB ID:
3JRT
Title:
Structure from the mobile metagenome of V. paracholerae: Integron cassette protein Vpc_cass2
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 64
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Integron cassette protein Vpc_cass2
Chain IDs:A
Chain Length:192
Number of Molecules:1
Biological Source:Vibrio paracholerae
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
Integron gene cassettes: a repository of novel protein folds with distinct interaction sites.
Plos One 8 e52934 e52934 (2013)
PMID: 23349695 DOI: 10.1371/journal.pone.0052934

Abstact

Mobile gene cassettes captured within integron arrays encompass a vast and diverse pool of genetic novelty. In most cases, functional annotation of gene cassettes directly recovered by cassette-PCR is obscured by their characteristically high sequence novelty. This inhibits identification of those specific functions or biological features that might constitute preferential factors for lateral gene transfer via the integron system. A structural genomics approach incorporating x-ray crystallography has been utilised on a selection of cassettes to investigate evolutionary relationships hidden at the sequence level. Gene cassettes were accessed from marine sediments (pristine and contaminated sites), as well as a range of Vibrio spp. We present six crystal structures, a remarkably high proportion of our survey of soluble proteins, which were found to possess novel folds. These entirely new structures are diverse, encompassing all-α, α+β and α/β fold classes, and many contain clear binding pocket features for small molecule substrates. The new structures emphasise the large repertoire of protein families encoded within the integron cassette metagenome and which remain to be characterised. Oligomeric association is a notable recurring property common to these new integron-derived proteins. In some cases, the protein-protein contact sites utilised in homomeric assembly could instead form suitable contact points for heterogeneous regulator/activator proteins or domains. Such functional features are ideal for a flexible molecular componentry needed to ensure responsive and adaptive bacterial functions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures