3HZD image
Deposition Date 2009-06-23
Release Date 2009-07-07
Last Version Date 2024-11-20
Entry Detail
PDB ID:
3HZD
Keywords:
Title:
Crystal structure of bothropstoxin-I (BthTX-I), a PLA2 homologue from Bothrops jararacussu venom
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.91 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Phospholipase A2 homolog bothropstoxin-1
Chain IDs:A, B
Chain Length:121
Number of Molecules:2
Biological Source:Bothrops jararacussu
Ligand Molecules
Primary Citation
Comparison between apo and complexed structures of bothropstoxin-I reveals the role of Lys122 and Ca(2+)-binding loop region for the catalytically inactive Lys49-PLA(2)s.
J.Struct.Biol. 171 31 43 (2010)
PMID: 20371382 DOI: 10.1016/j.jsb.2010.03.019

Abstact

Phospholipases A(2) (Asp49-PLA(2)s) are enzymes responsible for cellular membrane disruption through Ca(2+)-dependent hydrolysis of phospholipids. A class of these proteins (Lys49-PLA(2)s) does not show catalytic activity but can exert a pronounced local myotoxic effect that is not neutralized by serum therapy. In this work, we present five structures of Lys49-PLA(2)s from snakes of the Bothrops genus in apo form, complexed with PEG molecules and chemically modified by p-bromofenacil bromide (BPB), a classic inhibitor of PLA(2). We present herein an extensive structural analysis including: (i) the function of hydrophobic long-chain molecules as Lys49-PLA(2)s inhibitors, (ii) the role of Lys122, previously indicated as being responsible for Lys49-PLA(2)s catalytic inactivity and, (iii) a structural comparison of the Ca(2+)-binding loop region between Lys49 and Asp49-PLA(2)s. The Lys122 analysis of 30 different monomers for apo and complexed Lys49-PLA(2)s structures shows that this residue is very flexible and may bind to different carboxyl groups giving stability to the crystal structures. The structural comparisons of the Ca(2+)-binding loop region between Lys49 and Asp49-PLA(2)s reveal the importance of the Tyr28 residue conservation in Asp49-PLA(2)s to the integrity of this loop. The Tyr28 residue stabilizes this region by an interaction with Gly35 residue. In Lys49-PLA(2)s and low-catalytic Asp49-PLA(2)s this interaction does not occur, preventing the binding of Ca(2+).

Legend

Protein

Chemical

Disease

Primary Citation of related structures