3HMY image
Deposition Date 2009-05-29
Release Date 2009-07-14
Last Version Date 2024-10-16
Entry Detail
PDB ID:
3HMY
Keywords:
Title:
Crystal structure of HCR/T complexed with GT2
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Tetanus toxin
Gene (Uniprot):tetX
Chain IDs:A
Chain Length:450
Number of Molecules:1
Biological Source:Clostridium tetani
Primary Citation
Gangliosides as high affinity receptors for tetanus neurotoxin.
J.Biol.Chem. 284 26569 26577 (2009)
PMID: 19602728 DOI: 10.1074/jbc.M109.027391

Abstact

Tetanus neurotoxin (TeNT) is an exotoxin produced by Clostridium tetani that causes paralytic death to hundreds of thousands of humans annually. TeNT cleaves vesicle-associated membrane protein-2, which inhibits neurotransmitter release in the central nervous system to elicit spastic paralysis, but the molecular basis for TeNT entry into neurons remains unclear. TeNT is a approximately 150-kDa protein that has AB structure-function properties; the A domain is a zinc metalloprotease, and the B domain encodes a translocation domain and C-terminal receptor-binding domain (HCR/T). Earlier studies showed that HCR/T bound gangliosides via two carbohydrate-binding sites, termed the lactose-binding site (the "W" pocket) and the sialic acid-binding site (the "R" pocket). Here we report that TeNT high affinity binding to neurons is mediated solely by gangliosides. Glycan array and solid phase binding analyses identified gangliosides that bound exclusively to either the W pocket or the R pocket of TeNT; GM1a bound to the W pocket, and GD3 bound to the R pocket. Using these gangliosides and mutated forms of HCR/T that lacked one or both carbohydrate-binding pocket, gangliosides binding to both of the W and R pockets were shown to be necessary for high affinity binding to neuronal and non-neuronal cells. The crystal structure of a ternary complex of HCR/T with sugar components of two gangliosides bound to the W and R supported the binding of gangliosides to both carbohydrate pockets. These data show that gangliosides are functional dual receptors for TeNT.

Legend

Protein

Chemical

Disease

Primary Citation of related structures