3H5B image
Entry Detail
PDB ID:
3H5B
Keywords:
Title:
Crystal structure of wild type HIV-1 protease with novel P1'-ligand GRL-02031
Biological Source:
PDB Version:
Deposition Date:
2009-04-21
Release Date:
2009-06-16
Method Details:
Experimental Method:
Resolution:
1.29 Å
R-Value Free:
0.18
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:HIV-1 protease
Mutations:Q7K, L33I, L63I, C67A, C95A
Chain IDs:A, B
Chain Length:99
Number of Molecules:2
Biological Source:Human immunodeficiency virus type 1 (BRU ISOLATE)
Primary Citation
Design of HIV-1 protease inhibitors with pyrrolidinones and oxazolidinones as novel P1'-ligands to enhance backbone-binding interactions with protease: synthesis, biological evaluation, and protein-ligand X-ray studies.
J.Med.Chem. 52 3902 3914 (2009)
PMID: 19473017 DOI: 10.1021/jm900303m

Abstact

Structure-based design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors are described. In an effort to enhance interactions with protease backbone atoms, we have incorporated stereochemically defined methyl-2-pyrrolidinone and methyl oxazolidinone as the P1'-ligands. These ligands are designed to interact with Gly-27' carbonyl and Arg-8 side chain in the S1'-subsite of the HIV protease. We have investigated the potential of these ligands in combination with our previously developed bis-tetrahydrofuran (bis-THF) and cyclopentanyltetrahydrofuran (Cp-THF) as the P2-ligands. Inhibitor 19b with a (R)-aminomethyl-2-pyrrolidinone and a Cp-THF was shown to be the most potent compound. This inhibitor maintained near full potency against multi-PI-resistant clinical HIV-1 variants. A high resolution protein-ligand X-ray crystal structure of 19b-bound HIV-1 protease revealed that the P1'-pyrrolidinone heterocycle and the P2-Cp-ligand are involved in several critical interactions with the backbone atoms in the S1' and S2 subsites of HIV-1 protease.

Legend

Protein

Chemical

Disease

Primary Citation of related structures