3GXI image
Deposition Date 2009-04-02
Release Date 2009-05-05
Last Version Date 2024-10-16
Entry Detail
PDB ID:
3GXI
Keywords:
Title:
Crystal structure of acid-beta-glucosidase at pH 5.5
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.84 Å
R-Value Free:
0.23
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Glucosylceramidase
Gene (Uniprot):GBA1
Chain IDs:A, B, C, D
Chain Length:497
Number of Molecules:4
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability.
Biochemistry 48 4816 4827 (2009)
PMID: 19374450 DOI: 10.1021/bi9002265

Abstact

Human lysosomal enzymes acid-beta-glucosidase (GCase) and acid-alpha-galactosidase (alpha-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and alpha-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using alpha-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of alpha-Gal A with DGJ. Both GCase and alpha-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in alpha-Gal A are not seen. Thermodynamic parameters obtained from alpha-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and alpha-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological chaperones for lysosomal storage disorders.

Legend

Protein

Chemical

Disease

Primary Citation of related structures