3FPB image
Deposition Date 2009-01-05
Release Date 2009-04-07
Last Version Date 2025-03-19
Entry Detail
PDB ID:
3FPB
Keywords:
Title:
The Structure of Sarcoplasmic Reticulum Ca2+-ATPase Bound To Cyclopiazonic acid with ATP
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.55 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Sarcoplasmic/endoplasmic reticulum calcium ATPase 1
Gene (Uniprot):ATP2A1
Chain IDs:A
Chain Length:994
Number of Molecules:1
Biological Source:Oryctolagus cuniculus
Primary Citation
Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase.
J.Biol.Chem. 284 13513 13518 (2009)
PMID: 19289472 DOI: 10.1074/jbc.C900031200

Abstact

We have determined the structure of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in an E2.P(i)-like form stabilized as a complex with MgF(4)(2-), an ATP analog, adenosine 5'-(beta,gamma-methylene)triphosphate (AMPPCP), and cyclopiazonic acid (CPA). The structure determined at 2.5A resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca(2+)-ATPases, e.g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing key residues at or near the ATP binding site. A structural comparison to the Na(+),K(+)-ATPase reveals that the Phe(93) side chain occupies the equivalent binding pocket of the CPA site in SERCA, suggesting an important role of this residue in stabilization of the potassium-occluded E2 state of Na(+),K(+)-ATPase.

Legend

Protein

Chemical

Disease

Primary Citation of related structures