3FKI image
Deposition Date 2008-12-16
Release Date 2009-03-10
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3FKI
Keywords:
Title:
12-Subunit RNA Polymerase II Refined with Zn-SAD data
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.88 Å
R-Value Free:
0.30
R-Value Work:
0.28
R-Value Observed:
0.28
Space Group:
C 2 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB1
Gene (Uniprot):RPO21
Chain IDs:A
Chain Length:1733
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB2
Gene (Uniprot):RPB2
Chain IDs:B
Chain Length:1224
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB3
Gene (Uniprot):RPB3
Chain IDs:C
Chain Length:318
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB4
Gene (Uniprot):RPB4
Chain IDs:D
Chain Length:221
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC1
Gene (Uniprot):RPB5
Chain IDs:E
Chain Length:215
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC2
Gene (Uniprot):RPO26
Chain IDs:F
Chain Length:155
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB7
Gene (Uniprot):RPB7
Chain IDs:G
Chain Length:171
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC3
Gene (Uniprot):RPB8
Chain IDs:H
Chain Length:146
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB9
Gene (Uniprot):RPB9
Chain IDs:I
Chain Length:122
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC5
Gene (Uniprot):RPB10
Chain IDs:J
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB11
Gene (Uniprot):RPB11
Chain IDs:K
Chain Length:120
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC4
Gene (Uniprot):RPC10
Chain IDs:L
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Primary Citation
Structure of the 12-Subunit RNA Polymerase II Refined with the Aid of Anomalous Diffraction Data
J.Biol.Chem. 284 12933 12939 (2009)
PMID: 19289466 DOI: 10.1074/jbc.M809199200

Abstact

RNA polymerase II (Pol II) is the central enzyme of eukaryotic gene expression machinery. Complete definition of the three-dimensional structure of Pol II is essential for understanding the mechanisms that regulate transcription via protein-protein interactions within the Pol II apparatus. To date a series of Pol II-related crystal structures have been reported. However, certain peptide regions, including several that are implicated to interact with regulatory factors, remain obscure. Here we describe conformations for two such regions that are close to the Pol II surface and assume seemingly flexible loop structures. One is located in the TFIIF-interacting Protrusion domain, whereas the other is in the TFIIE-interacting Clamp domain. This structural definition was aided by the application of an advanced crystallographic refinement approach that utilizes the single anomalous diffraction (SAD) from zinc ions bound intrinsically in Pol II. The SAD-based strategy allowed the 12-subunit Pol II model to be fully refined up to 3.8 A with excellent stereochemical properties, demonstrating the effectiveness of the SAD approach for the refinement of large structures at low-to-moderate resolutions. Our results also define additional components of the free Pol II, including the functionally critical Fork Loop-1 and Fork Loop-2 elements. As such, this refined Pol II model provides the most complete structural reference for future analyses of complex structures formed between Pol II and its regulatory factors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback