3ESS image
Entry Detail
PDB ID:
3ESS
Title:
Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with the 1,8-Naphthalimide inhibitor
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2008-10-06
Release Date:
2009-09-15
Method Details:
Experimental Method:
Resolution:
1.19 Å
R-Value Free:
0.15
R-Value Work:
0.13
R-Value Observed:
0.13
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Cholix toxin
Chain IDs:A
Chain Length:230
Number of Molecules:1
Biological Source:Vibrio cholerae
Ligand Molecules
Primary Citation
Yeast as a tool for characterizing mono-ADP-ribosyltransferase toxins
Fems Microbiol.Lett. 300 97 106 (2009)
PMID: 19793133 DOI: 10.1111/j.1574-6968.2009.01777.x

Abstact

The emergence of bacterial antibiotic resistance poses a significant challenge in the pursuit of novel therapeutics, making new strategies for drug discovery imperative. We have developed a yeast growth-defect phenotypic screen to help solve this current dilemma. This approach facilitates the identification and characterization of a new diphtheria toxin (DT) group, ADP-ribosyltransferase toxins from pathogenic bacteria. In addition, this assay utilizes Saccharomyces cerevisiae, a reliable model for bacterial toxin expression, to streamline the identification and characterization of new inhibitors against this group of bacterial toxins that may be useful for antimicrobial therapies. We show that a mutant of the elongation factor 2 target protein in yeast, G701R, confers resistance to all DT group toxins and recovers the growth-defect phenotype in yeast. We also demonstrate the ability of a potent small-molecule toxin inhibitor, 1,8-naphthalimide (NAP), to alleviate the growth defect caused by toxin expression in yeast. Moreover, we determined the crystal structure of the NAP inhibitor-toxin complex at near-atomic resolution to provide insight into the inhibitory mechanism. Finally, the NAP inhibitor shows therapeutic protective effects against toxin invasion of mammalian cells, including human lung cells.

Legend

Protein

Chemical

Disease

Primary Citation of related structures