3EQL image
Deposition Date 2008-09-30
Release Date 2008-10-28
Last Version Date 2023-09-06
Entry Detail
PDB ID:
3EQL
Keywords:
Title:
Crystal structure of the T. Thermophilus RNA polymerase holoenzyme in complex with antibiotic myxopyronin
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.27
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
P 32
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit alpha
Gene (Uniprot):rpoA
Chain IDs:A, B, G (auth: K), H (auth: L)
Chain Length:315
Number of Molecules:4
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta
Gene (Uniprot):rpoB
Chain IDs:C, I (auth: M)
Chain Length:1119
Number of Molecules:2
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta'
Gene (Uniprot):rpoC
Chain IDs:D, J (auth: N)
Chain Length:1524
Number of Molecules:2
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit omega
Gene (Uniprot):rpoZ
Chain IDs:E, K (auth: O)
Chain Length:99
Number of Molecules:2
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:RNA polymerase sigma factor rpoD
Chain IDs:F, L (auth: P)
Chain Length:423
Number of Molecules:2
Biological Source:Thermus thermophilus
Primary Citation
Transcription inactivation through local refolding of the RNA polymerase structure.
Nature 457 332 335 (2009)
PMID: 18946472 DOI: 10.1038/nature07510

Abstact

Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.

Legend

Protein

Chemical

Disease

Primary Citation of related structures