3EFT image
Deposition Date 2008-09-10
Release Date 2009-09-08
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3EFT
Keywords:
Title:
Crystal structure of the complex between Carbonic Anhydrase II and a spin-labeled sulfonamide incorporating TEMPO moiety
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.85 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Carbonic anhydrase 2
Gene (Uniprot):CA2
Chain IDs:A
Chain Length:260
Number of Molecules:1
Biological Source:
Primary Citation
Dissecting the Inhibition Mechanism of Cytosolic versus Transmembrane Carbonic Anhydrases by ESR
J.Phys.Chem.B 113 13998 14005 (2009)
PMID: 19778001 DOI: 10.1021/jp906593c

Abstact

Spin-labeled sulfonamides incorporating TEMPO moieties showed efficient activity as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and, in particular, of the physiologically relevant isoenzymes hCA II, hCA IX, and hCA XIV. Here we report a detailed analysis of this class of inhibitors by means of ESR and X-ray crystallography, in comparison with inhibition tests against all mammalian CA isoforms, CA I-XIV. Local dynamics and structure were manifested in the ESR signal through modulation of internal magnetic anisotropies. Analysis and fitting of the ESR spectra of several spin-labeled sulfonamides with isoforms CA II (cytosolic), CA IX (catalytic domain and full length transmembrane, tumor-associated isoform) and CA XIV (transmembrane isozyme) provided information about polarity and dynamics of specific microenvironments sensed by the nitroxyl group within the active site cavity of these isozymes. The comparison of ESR and crystallographic data of hCA II complexed with one of these inhibitors constitutes a useful tool for the understanding of molecular hindrance and ordering within the enzyme active site, and provides theoretical bases to use these inhibitors for imaging purposes of hypoxic tumors overexpressing the transmembrane isozyme CA IX. Combining the sulfonamide zinc-binding group with the TEMPO moiety thus allowed to dissect the selective inhibition mechanism of different cytosolic and transmembrane carbonic anhydrases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures