3DZD image
Entry Detail
PDB ID:
3DZD
Title:
Crystal structure of sigma54 activator NTRC4 in the inactive state
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2008-07-29
Release Date:
2008-11-25
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.26
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Transcriptional regulator (NtrC family)
Chain IDs:A, B
Chain Length:368
Number of Molecules:2
Biological Source:Aquifex aeolicus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Primary Citation
Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation.
J.Mol.Biol. 384 1058 1075 (2008)
PMID: 18955063 DOI: 10.1016/j.jmb.2008.10.024

Abstact

Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred. Activity assays show that assembly of NtrC4's active oligomer is repressed by the N-terminal receiver domain, and that BeF3- addition (mimicking phosphorylation) removes this repression. Observation of assembly without activation for NtrC4 indicates that it is much less strongly repressed than NtrC1. The crystal structure of the unactivated receiver-ATPase domain combination shows a partially disrupted interface. NMR structures of the regulatory domain show that its activation mechanism is very similar to that of NtrC1. The crystal structure of the NtrC4 DNA-binding domain shows that it is dimeric and more similar in structure to NtrC than NtrC1. Electron microscope images of the ATPase-DNA-binding domain combination show formation of oligomeric rings. Sequence alignments provide insights into the distribution of activation mechanisms in this family of proteins.

Legend

Protein

Chemical

Disease

Primary Citation of related structures