3DP9 image
Deposition Date 2008-07-07
Release Date 2009-03-10
Last Version Date 2024-02-21
Entry Detail
PDB ID:
3DP9
Keywords:
Title:
Crystal structure of Vibrio cholerae 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with butylthio-DADMe-Immucillin A
Biological Source:
Source Organism:
Vibrio cholerae (Taxon ID: 666)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.26
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:MTA/SAH nucleosidase
Gene (Uniprot):mtnN
Chain IDs:A, B (auth: C)
Chain Length:231
Number of Molecules:2
Biological Source:Vibrio cholerae
Primary Citation
Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.
Nat.Chem.Biol. 5 251 257 (2009)
PMID: 19270684 DOI: 10.1038/nchembio.153

Abstact

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC(50) values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC(50) values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

Legend

Protein

Chemical

Disease

Primary Citation of related structures