3DLW image
Deposition Date 2008-06-29
Release Date 2009-07-07
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3DLW
Title:
Antichymotrypsin
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.28
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Alpha-1-antichymotrypsin
Gene (Uniprot):SERPINA3
Mutations:A351G, A352T, V370T
Chain IDs:A
Chain Length:411
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Identification and characterization of a misfolded monomeric serpin formed at physiological temperature
J.Mol.Biol. 403 459 467 (2010)
PMID: 20837024 DOI: 10.1016/j.jmb.2010.09.007

Abstact

The native serpin state is kinetically trapped. However, under mildly destabilizing conditions, the conformational landscape changes, and a number of nonnative conformations with increased stability can be readily formed. The ability to undergo structural change is due to intrinsic strain within the serpin's tertiary fold, which is utilized for proteinase inhibition but renders the protein susceptible to aberrant folding and self-association. The relationship between these various conformations is poorly understood. Antichymotrypsin (ACT) is an inhibitory serpin that readily forms a number of inactive conformations, induced via either environmental stress or interaction with proteinases. Here we have used a variety of biophysical and structural techniques to characterize the relationship between some of these conformations. Incubation of ACT at physiological temperature results in the formation of a range of conformations, including both polymer and misfolded monomer. The ability to populate these nonnative states and the native conformation reflects an energy landscape that is very sensitive to the solution conditions. X-ray crystallography reveals that the misfolded monomeric conformation is in the delta conformation. Further polymerization and seeding experiments show that the delta conformation is an end point in the misfolding pathway of ACT and not an on-pathway intermediate formed during polymerization. The observation that ACT readily forms this inactive conformation at physiological temperature and pH suggests that it may have a role in both health and disease.

Legend

Protein

Chemical

Disease

Primary Citation of related structures