3D03 image
Deposition Date 2008-04-30
Release Date 2008-10-14
Last Version Date 2024-10-30
Entry Detail
PDB ID:
3D03
Keywords:
Title:
1.9A structure of Glycerophoshphodiesterase (GpdQ) from Enterobacter aerogenes
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Phosphohydrolase
Gene (Uniprot):gpdQ
Chain IDs:A, B, C, D, E, F
Chain Length:274
Number of Molecules:6
Biological Source:Enterobacter aerogenes
Ligand Molecules
Primary Citation
Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes.
J.Am.Chem.Soc. 130 14129 14138 (2008)
PMID: 18831553 DOI: 10.1021/ja803346w

Abstact

The glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a promiscuous binuclear metallohydrolase that catalyzes the hydrolysis of mono-, di-, and triester substrates, including some organophosphate pesticides and products of the degradation of nerve agents. GpdQ has attracted recent attention as a promising enzymatic bioremediator. Here, we have investigated the catalytic mechanism of this versatile enzyme using a range of techniques. An improved crystal structure (1.9 A resolution) illustrates the presence of (i) an extended hydrogen bond network in the active site, and (ii) two possible nucleophiles, i.e., water/hydroxide ligands, coordinated to one or both metal ions. While it is at present not possible to unambiguously distinguish between these two possibilities, a reaction mechanism is proposed whereby the terminally bound H2O/OH(-) acts as the nucleophile, activated via hydrogen bonding by the bridging water molecule. Furthermore, the presence of substrate promotes the formation of a catalytically competent binuclear center by significantly enhancing the binding affinity of one of the metal ions in the active site. Asn80 appears to display coordination flexibility that may modulate enzyme activity. Kinetic data suggest that the rate-limiting step occurs after hydrolysis, i.e., the release of the phosphate moiety and the concomitant dissociation of one of the metal ions and/or associated conformational changes. Thus, it is proposed that GpdQ employs an intricate regulatory mechanism for catalysis, where coordination flexibility in one of the two metal binding sites is essential for optimal activity.

Legend

Protein

Chemical

Disease

Primary Citation of related structures