3CQ4 image
Deposition Date 2008-04-02
Release Date 2008-07-01
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3CQ4
Keywords:
Title:
Histidinol-phosphate aminotransferase from Corynebacterium glutamicum
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 32 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Histidinol-phosphate aminotransferase
Gene (Uniprot):hisC
Chain IDs:A, B
Chain Length:376
Number of Molecules:2
Biological Source:Corynebacterium glutamicum
Ligand Molecules
Primary Citation
Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum
Acta Crystallogr.,Sect.D 64 675 685 (2008)
PMID: 18560156 DOI: 10.1107/S0907444908009438

Abstact

Histidinol-phosphate aminotransferase (HisC) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the reversible transamination reaction between histidinol phosphate (His-P) and 2-oxoglutarate (O-Glu). The crystal structures of apo histidinol-phosphate aminotransferase from Corynebacterium glutamicum, of the internal PLP aldimine adduct and of a pyridoxamine 5-phosphate-enzyme complex were determined at resolutions of 2.2, 2.1 and 1.8 A, respectively. Residues important for substrate specificity were identified by modelling His-P into the active site and comparison with crystal structures of HisC from Thermotoga maritima and Escherichia coli. Four of the residues lining the substrate-binding pocket were studied by site-directed mutagenesis. Kinetic analysis of the Tyr21Phe mutant suggested that the hydrogen bond between the side chain of this residue and the phosphate group of His-P is important for recognition of the natural substrate and discrimination against other potential amino donors such as phenylalanine and leucine. The mutagenesis studies further indicated that residue Asn99 does not contribute to the specific recognition of the amino-acid donor, but may be involved in binding of the phosphate group of pyridoxal 5'-phosphate. The conserved residues Tyr123 and Tyr257 interact with the substrate through van der Waals interactions and their potential for hydrogen-bonding interactions is not utilized in substrate recognition, as the corresponding phenylalanine mutants show only a moderate effect on the catalytic efficiency kcat/Km.

Legend

Protein

Chemical

Disease

Primary Citation of related structures