3AUO image
Deposition Date 2011-02-11
Release Date 2012-01-25
Last Version Date 2023-11-01
Entry Detail
PDB ID:
3AUO
Keywords:
Title:
DNA polymerase X from Thermus thermophilus HB8 ternary complex with 1-nt gapped DNA and ddGTP
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.29
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA polymerase beta family (X family)
Gene (Uniprot):TTHA1150
Chain IDs:A, B
Chain Length:575
Number of Molecules:2
Biological Source:Thermus thermophilus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
DDG C DG ?
Primary Citation
The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2+)-dNTP before binding to DNA.
J.Mol.Biol. 417 179 196 (2012)
PMID: 22306405 DOI: 10.1016/j.jmb.2012.01.025

Abstact

DNA with single-nucleotide (1-nt) gaps can arise during various DNA processing events. These lesions are repaired by X-family DNA polymerases (PolXs) with high gap-filling activity. Some PolXs can bind productively to dNTPs in the absence of DNA and fill these 1-nt gaps. Although PolXs have a crucial role in efficient gap filling, currently, little is known of the kinetic and structural details of their productive dNTP binding. Here, we show that Thermus thermophilus HB8 PolX (ttPolX) had strong binding affinity for Mg(2+)-dNTPs in the absence of DNA and that it follows a Theorell-Chance (hit-and-run) mechanism with nucleotide binding first. Comparison of the intermediate crystal structures of ttPolX in a binary complex with dGTP and in a ternary complex with 1-nt gapped DNA and Mg(2+)-ddGTP revealed that the conformation of the incoming nucleotide depended on whether or not DNA was present. Furthermore, the Lys263 residue located between two guanosine conformations was essential to the strong binding affinity of the enzyme. The ability to bind to either syn-dNTP or anti-dNTP and the involvement of a Theorell-Chance mechanism are key aspects of the strong nucleotide-binding and efficient gap-filling activities of ttPolX.

Legend

Protein

Chemical

Disease

Primary Citation of related structures