3AHN image
Deposition Date 2010-04-25
Release Date 2010-08-25
Last Version Date 2024-02-21
Entry Detail
PDB ID:
3AHN
Title:
PZ PEPTIDASE A with Inhibitor 1
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Oligopeptidase
Gene (Uniprot):pz-A
Chain IDs:A, B
Chain Length:564
Number of Molecules:2
Biological Source:Geobacillus sp. MO-1
Peptide-like Molecules
PRD_000668
Primary Citation
The exquisite structure and reaction mechanism of bacterial Pz-peptidase A toward collagenous peptides: X-ray crystallographic structure analysis of PZ-peptidase a reveals differences from mammalian thimet oligopeptidase.
J.Biol.Chem. 285 34972 34980 (2010)
PMID: 20817732 DOI: 10.1074/jbc.M110.141838

Abstact

Pz-peptidase A, from the thermophilic bacterium Geobacillus collagenovorans MO-1, hydrolyzes a synthetic peptide substrate, 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-PLGPR), which contains a collagen-specific tripeptide sequence, -Gly-Pro-X-, but does not act on collagen proteins themselves. The mammalian enzyme, thimet oligopeptidase (TOP), which has comparable functions with bacterial Pz-peptidases but limited identity at the primary sequence level, has recently been subjected to x-ray crystallographic analysis; however, no crystal structure has yet been reported for complexes of TOP with substrate analogues. Here, we report crystallization of recombinant Pz-peptidase A in complex with two phosphinic peptide inhibitors (PPIs) that also function as inhibitors of TOP and determination of the crystal structure of these complexes at 1.80-2.00 Å resolution. The most striking difference between Pz-peptidase A and TOP is that there is no channel running the length of bacterial protein. Whereas the structure of TOP resembles an open bivalve, that of Pz-peptidase A is closed and globular. This suggests that collagenous peptide substrates enter the tunnel at the top gateway of the closed Pz-peptidase A molecule, and reactant peptides are released from the bottom gateway after cleavage at the active site located in the center of the tunnel. One of the two PPIs, PPI-2, which contains the collagen-specific sequence, helped to clarify the exquisite structure and reaction mechanism of Pz-peptidase A toward collagenous peptides. This study describes the mode of substrate binding and its implication for the mammalian enzymes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback