2ieh image
Deposition Date 2006-09-19
Release Date 2007-01-23
Last Version Date 2023-08-30
Entry Detail
PDB ID:
2IEH
Keywords:
Title:
Crystal structure of human kinesin Eg5 in complex with (R)-mon97, a new monastrol-based inhibitor that binds as (R)-enantiomer
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Kinesin-like protein KIF11
Gene (Uniprot):KIF11
Chain IDs:A, B
Chain Length:367
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Structure of human Eg5 in complex with a new monastrol-based inhibitor bound in the R configuration.
J.Biol.Chem. 282 9740 9747 (2007)
PMID: 17251189 DOI: 10.1074/jbc.M608883200

Abstact

Drugs that target mitotic spindle proteins have been proven useful for tackling tumor growth. Eg5, a kinesin-5 family member, represents a potential target, since its inhibition leads to prolonged mitotic arrest through the activation of the mitotic checkpoint and apoptotic cell death. Monastrol, a specific dihydropyrimidine inhibitor of Eg5, shows stereo-specificity, since predominantly the (S)-, but not the (R)-, enantiomer has been shown to be the biologically active compound in vitro and in cell-based assays. Here, we solved the crystal structure (2.7A) of the complex between human Eg5 and a new keto derivative of monastrol (named mon-97), a potent antimitotic inhibitor. Surprisingly, we identified the (R)-enantiomer bound in the active site, and not, as for monastrol, the (S)-enantiomer. The absolute configuration of this more active (R)-enantiomer has been unambiguously determined via chemical correlation and x-ray analysis. Unexpectedly, both the R- and the S-forms inhibit Eg5 ATPase activity with IC(50) values of 110 and 520 nM (basal assays) and 150 nm and 650 nm (microtubule-stimulated assays), respectively. However, the difference was large enough for the protein to select the (R)- over the (S)-enantiomer. Taken together, these results show that in this new monastrol family, both (R)- and (S)-enantiomers can be active as Eg5 inhibitors. This considerably broadens the alternatives for rational drug design.

Legend

Protein

Chemical

Disease

Primary Citation of related structures