2ZCY image
Deposition Date 2007-11-15
Release Date 2008-04-08
Last Version Date 2024-11-06
Entry Detail
PDB ID:
2ZCY
Keywords:
Title:
yeast 20S proteasome:syringolin A-complex
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.90 Å
R-Value Free:
0.24
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Proteasome component Y7
Gene (Uniprot):PRE8
Chain IDs:A, O
Chain Length:250
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component Y13
Gene (Uniprot):PRE9
Chain IDs:B, P
Chain Length:258
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PRE6
Gene (Uniprot):PRE6
Chain IDs:C, Q
Chain Length:254
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PUP2
Gene (Uniprot):PUP2
Chain IDs:D, R
Chain Length:260
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PRE5
Gene (Uniprot):PRE5
Chain IDs:E, S
Chain Length:234
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component C1
Gene (Uniprot):PRE10
Chain IDs:F, T
Chain Length:287
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component C7-alpha
Gene (Uniprot):SCL1
Chain IDs:G, U
Chain Length:252
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PUP1
Gene (Uniprot):PUP1
Chain IDs:H, V
Chain Length:232
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PUP3
Gene (Uniprot):PUP3
Chain IDs:I, W
Chain Length:205
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component C11
Gene (Uniprot):PRE1
Chain IDs:J, X
Chain Length:198
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PRE2
Gene (Uniprot):PRE2
Chain IDs:K, Y
Chain Length:212
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component C5
Gene (Uniprot):PRE7
Chain IDs:L, Z
Chain Length:241
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PRE4
Gene (Uniprot):PRE4
Chain IDs:M, AA (auth: 0)
Chain Length:266
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:Proteasome component PRE3
Gene (Uniprot):PRE3
Chain IDs:N, BA (auth: 1)
Chain Length:196
Number of Molecules:2
Biological Source:Saccharomyces cerevisiae
Ligand Molecules
Primary Citation
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
Nature 452 755 758 (2008)
PMID: 18401409 DOI: 10.1038/nature06782

Abstact

Pathogenic bacteria often use effector molecules to increase virulence. In most cases, the mode of action of effectors remains unknown. Strains of Pseudomonas syringae pv. syringae (Pss) secrete syringolin A (SylA), a product of a mixed non-ribosomal peptide/polyketide synthetase, in planta. Here we identify SylA as a virulence factor because a SylA-negative mutant in Pss strain B728a obtained by gene disruption was markedly less virulent on its host, Phaseolus vulgaris (bean). We show that SylA irreversibly inhibits all three catalytic activities of eukaryotic proteasomes, thus adding proteasome inhibition to the repertoire of modes of action of virulence factors. The crystal structure of the yeast proteasome in complex with SylA revealed a novel mechanism of covalent binding to the catalytic subunits. Thus, SylA defines a new class of proteasome inhibitors that includes glidobactin A (GlbA), a structurally related compound from an unknown species of the order Burkholderiales, for which we demonstrate a similar proteasome inhibition mechanism. As proteasome inhibitors are a promising class of anti-tumour agents, the discovery of a novel family of inhibitory natural products, which we refer to as syrbactins, may also have implications for the development of anti-cancer drugs. Homologues of SylA and GlbA synthetase genes are found in some other pathogenic bacteria, including the human pathogen Burkholderia pseudomallei, the causative agent of melioidosis. It is thus possible that these bacteria are capable of producing proteasome inhibitors of the syrbactin class.

Legend

Protein

Chemical

Disease

Primary Citation of related structures