2Z25 image
Deposition Date 2007-05-17
Release Date 2007-10-09
Last Version Date 2023-11-15
Entry Detail
PDB ID:
2Z25
Keywords:
Title:
Thr110Val dihydroorotase from E. coli
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.87 Å
R-Value Free:
0.18
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Dihydroorotase
Gene (Uniprot):pyrC
Mutations:T110V
Chain IDs:A, B
Chain Length:347
Number of Molecules:2
Biological Source:Escherichia coli
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
KCX A LYS LYSINE NZ-CARBOXYLIC ACID
Primary Citation
Kinetic and Structural Analysis of Mutant Escherichia coli Dihydroorotases: A Flexible Loop Stabilizes the Transition State
Biochemistry 46 10538 10550 (2007)
PMID: 17711307 DOI: 10.1021/bi701098e

Abstact

Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamyl-l-aspartate (CA-asp) to l-dihydroorotate (DHO) in the de novo biosynthesis of pyrimidine nucleotides. Two different conformations of the surface loop (residues 105-115) were found in the dimeric Escherichia coli DHOase crystallized in the presence of DHO (PDB code 1XGE). The loop asymmetry reflected that of the active site contents of the two subunits: the product, DHO, was bound in the active site of one subunit and the substrate, CA-asp, in the active site of the other. In the substrate- (CA-asp-) bound subunit, the surface loop reaches in toward the active site and makes hydrogen bonds with the bound CA-asp via two threonine residues (Thr109 and Thr110), whereas the loop forms part of the surface of the protein in the product- (DHO-) bound subunit. To investigate the relationship between the structural states of this loop and the catalytic mechanism of the enzyme, a series of mutant DHOases including deletion of the flexible loop were generated and characterized kinetically and structurally. Disruption of the hydrogen bonds between the surface loop and the substrate results in significant loss of catalytic activity. Furthermore, structures of these mutants with low catalytic activity have no interpretable electron density for parts of the flexible loop. The structure of the mutant (Delta107-116), in which the flexible loop is deleted, shows only small differences in positions of other substrate binding residues and in the binuclear zinc center compared with the native structure, yet the enzyme has negligible activity. The kinetic and structural analyses suggest that Thr109 and Thr110 in the flexible loop provide productive binding of substrate and stabilize the transition-state intermediate, thereby increasing catalytic activity.

Legend

Protein

Chemical

Disease

Primary Citation of related structures