2YXN image
Entry Detail
PDB ID:
2YXN
Keywords:
Title:
Structual basis of azido-tyrosine recognition by engineered bacterial Tyrosyl-tRNA synthetase
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2007-04-26
Release Date:
2008-04-29
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Tyrosyl-tRNA synthetase
Mutations:Y37V, Q195C
Chain IDs:A
Chain Length:322
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion
Nucleic Acids Res. 38 3682 3691 (2010)
PMID: 20159998 DOI: 10.1093/nar/gkq080

Abstact

Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase-tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRS-tRNA(Tyr) pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNA(Tyr). The endogenous TyrRS and tRNA(Tyr) genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRS-tRNA(Tyr) pair. In this engineered strain, 3-iodo-L-tyrosine and 3-azido-L-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-L-tyrosine and was also found to recognize 3-azido-L-tyrosine. The structural basis for the 3-azido-L-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion.

Legend

Protein

Chemical

Disease

Primary Citation of related structures