2YH2 image
Entry Detail
PDB ID:
2YH2
Keywords:
Title:
Pyrobaculum calidifontis esterase monoclinic form
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2011-04-27
Release Date:
2011-05-18
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.21
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ESTERASE
Chain IDs:A, B, C, D
Chain Length:313
Number of Molecules:4
Biological Source:PYROBACULUM CALIDIFONTIS
Ligand Molecules
Primary Citation
The Crystal Structure of an Esterase Fom the Hyperthermophilic Microorganism Pyrobaculum Calidifontis Va1 Supports Explanation of its Enantioselectivity.
Appl.Microbiol.Biotechnol. 91 1061 ? (2011)
PMID: 21614503 DOI: 10.1007/S00253-011-3337-9

Abstact

The highly thermostable esterase from the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 (PestE) shows high enantioselectivity (E > 100) in the kinetic resolution of racemic chiral carboxylic acids, but little selectivity towards acetates of tertiary alcohols (E = 2-4). To explain these unique properties, its crystal structure has been determined at 2.0 Å resolution. The enzyme is a member of the hormone-sensitive lipase group (group H) of the esterase/lipase superfamily on the basis of the amino acid sequence identity. The PestE structure shows a canonical α/β-hydrolase fold as core domain with a cap structure at the C-terminal end of the β-sheet. A tetramer in the crystal packing is formed of two dimers; the dimeric form is observed in solution. Conserved dimers and even tetramers are found in other group H proteins. The amino acid residues Ser157, His284, and Asp254 form the catalytic triad, which is typically found in α/β-hydrolases. The oxyanion hole is composed of Gly85 and Gly86 within the conserved sequence motif HGGG(M,F,W) (amino acid residues 83-87) and Ala158. With the elucidated structure, experimental results about enantioselectivity towards the two model substrate classes (as exemplified for 3-phenylbutanoic acid ethyl ester and 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate) could be explained by molecular modeling. For both enantiomers of the tertiary alcohol, orientations in two binding pockets were obtained without significant energy differences corresponding to the observed low enantioselectivity due to missing steric repulsions. In contrast, for the carboxylic acid ester, two different orientations with significant energy differences for each enantiomer were found matching the high E values.

Legend

Protein

Chemical

Disease

Primary Citation of related structures